VAE Chemical for Indonesia
VAE Chemical for Indonesia: High-Quality Products for Various Industry Applications
When it comes to finding the best chemical solutions for various industrial applications in Indonesia, VAE Chemical is undoubtedly one of the leading names that comes to mind. With years of expertise and experience in manufacturing high-quality VAE polymers, the company has established a strong reputation for delivering reliable and consistent products to clients all across the world.
VAE Chemical for Indonesia has a diverse range of offerings that fulfill the needs of various industries, including construction, paint, packaging, and textiles. The company's products are highly versatile and can be used for various applications, such as adhesive bonding, concrete modification, waterproofing, and coatings.
One of the reasons why VAE Chemical for Indonesia is preferred by so many professionals is because of its exceptional quality control measures. The company's state-of-the-art manufacturing facilities are equipped with modern quality monitoring equipment, which allows for the production of high-quality products that meet international standards.
Moreover, VAE Chemical for Indonesia has a team of experienced chemists and engineers who are adept at manufacturing products to meet the specific needs of clients. The company's personnel work closely with clients to understand their needs and challenges to create bespoke solutions that cater to their requirements.
VAE Chemical for Indonesia's products are designed to withstand harsh environmental conditions and provide lasting results, making them an ideal choice for industries that demand durability and reliability. Additionally, the company's products are easy to use, making them an ideal choice for professionals who value ease of application.
In conclusion, VAE Chemical for Indonesia is a trusted and reliable brand that supplies high-quality VAE polymers to various industries in Indonesia. Its products are renowned for their consistent quality, versatility, and durability, which makes them an excellent choice for professionals across different industries.
With a strong presence in India, Pakistan, Singapore, Malta, and the United States, VAE Chemical is a brand that is recognized globally for its expertise, experience, authoritativeness, and trustworthiness. So if you are looking for high-quality chemical solutions that can meet your industry needs, be sure to consider VAE Chemical's products.
Faq
Regarding the relationship between viscosity and temperature in HPMC (HPMC viscosity), what should be noted in practical applications?
The dosage of HPMC in actual application varies depending on factors such as climate, temperature, local lime and calcium quality, putty powder formulation, and the desired quality specified by the customer. Generally, it ranges between 4 kg to 5 kg. For example, in Beijing, most putty powders use around 5 kg; in Guizhou, it is mostly 5 kg in summer and 4.5 kg in winter; in Yunnan, the dosage is smaller, usually around 3 kg to 4 kg, and so on.
What is the relationship between the gelation temperature of hydroxypropyl methylcellulose (HPMC) and something else?
1. Interior wall putty powder: Heavy calcium carbonate 800KG, light calcium carbonate 150KG (Starch ether, pure Qing, Peng run soil, citric acid, polyacrylamide, etc., can be added as appropriate).
2. Exterior wall putty powder: Cement 350KG, heavy calcium carbonate 500KG, quartz sand 150KG, latex powder 8-12KG, cellulose ether 3KG, starch ether 0.5KG, wood fiber 2KG.
HPMC is a non-ionic type of cellulose ether. So, what does "non-ionic" mean?
The two main indicators most users are concerned about are the content of hydroxypropyl and viscosity. Higher hydroxypropyl content generally indicates better water retention. A higher viscosity also provides relatively better water retention (not absolute), and HPMC with higher viscosity is more suitable for cement mortar.
What is the application of HPMC in putty powder, and what causes the formation of bubbles in putty powder?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.