+86 181 3228 9294

VAE Chemical for Brazil

VAE Chemical for Brazil: The Best Solution for High-quality Construction Brazil’s construction industry is booming, and with it comes an increasing demand for high-quality construction chemicals. If you’re in the construction business, you know that using the right chemicals can make all the difference in the durability and performance of your structure. That’s why you need VAE Chemical for Brazil. VAE Chemical is a leading supplier of high-performance chemicals for construction. Our products are formulated to provide superior bonding and adhesion, higher tensile strength, and overall better performance. Our specialty is vinyl acetate-ethylene (VAE) copolymers, which are widely used in a variety of construction applications, including cement modification, tile adhesives, and waterproofing. What sets VAE Chemical apart is our commitment to quality. All of our products are rigorously tested and manufactured to the highest industry standards. We’re constantly investing in research and development to ensure that our products meet the ever-changing needs of the construction industry. But don’t just take our word for it – our products have been tried and tested in some of the most demanding construction projects around the world. From India and Morocco to Palestine, Philippines, and Peru, VAE Chemical has helped builders achieve their construction goals with top-quality solutions. Whether you’re building a residential or commercial property, using VAE Chemical for Brazil will give you an edge when it comes to durability, performance, and overall quality. Our products are designed to withstand harsh environmental conditions, ensuring that your structure will stand the test of time. If you want to take your construction projects to the next level, trust VAE Chemical for Brazil. Contact us today to learn more about our products and how we can help you achieve your construction goals. Remember to use the keywords VAE Chemical and India, Morocco, Palestine, Philippines, Peru in your search for construction chemicals.

Application

Hydroxyethyl cellulose(HEC)

The most important property of hydroxyethyl cellulose powder is that it acts as a thickener, in creasing the viscosity of the liquid,and its thickening depends on its concentration. If you're searching for a versatile solution that enhances the performance of your products, look no further than Hydroxyethyl Cellulose (HEC) powder.

Gypsum Special Grade HPMC

The gypsum special grade hydroxypropyl methyl cellulose HPMC has the characteristics of high water retention, dispersibility, good fineness, good workability and easy dissolution. widely used in gypsum products like gypsum plaster, adhesive plaster, embedded gypsum, tile adhesives etc.

Daily Chemical Products Additive

Daily Chemical HPMC has a variety of properties such as thickening, foam stabllization,emulifiation, and easy dispersion. Shampoo Additive HPMC has good compatibility with various additives of other daily chemical products. It is widely used in detergents, shower gels, shampoos, hand sanitizers, and laundry liquid and other products.

Tile Adhesive Additive

Tile Adhesive Additive HPMC can ensure the smooth construction on difterent base surtaces, even when the ambient temperalure is relalively harsh, the tile adhesive can be given a long enough open time and adjustable time.

Gypsum Additive

In gypsum products, the focus is on water retention, retardation and lubrication. Different gypsum has different effects on product performance, so thickening, water retention, and retardation determine the quality of gypsum building materials.

Mortar Additive

Adding hydroxypropyl metylellulose can improve anti-sip performance, improve wetting performance, thicken, improve batch scraping and slipping, easy to level, improve surface performance and strength, and have very good compatibility with other additives.

Putty Powder Additive

Hydroxypropyl metylcellulose is a commonly used raw material in powdered building materials, which greatly improves the slip performance and anti-sag performance of the construction, improves the wettability, improves the anti-slip performance of the putty, improves the leveling effect of the putty, and improves the construction eficlency.

Technical Guidelines for Hydroxypropyl Methylcellulose (HPMC)

As a professional manufacturer of architectural-grade HPMC, we provide you with comprehensive technical guidance and problem-solving support throughout the production and application processes.

How much do you know about Hydroxypropyl methyl cellulose(HPMC)?

Hydroxypropyl methyl cellulose (HPMC) is a non-ionic cellulose ether obtained by cellulose alkalization, etherification, neutralization and washing. HPMC has good thickening, dispersing, emulsifying, film-forming properties, etc.It is the first choice for production of high quality building materials additives.

Laboratory overview

We have both Chemical Lab and Application Lab to ensure each order's best satisfaction

How to improve the adhesion of putty

When encountering the projects that have been constructed, it is found that the adhesion of putty on the exterior wall is poor, the following methods can be adopted to improve the adhesion of putty:

Dissolution Method

Take the required amount of hot water into the container and heat to above 85., stir slowly and add the product gradually The cellulose initially floats on the water, but gradually disperses in water and forms homogeneous slurry. Goon stirring until it cools down and becomes clear

Quick Find

Faq

  • What are the main technical indicators of Hydroxypropyl Methylcellulose (HPMC)?

    MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers. 1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention. 2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature. 3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar. 4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion. HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content. (1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose. (2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature. (3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase. (4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose. (5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums. (6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose. (7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
  • What are the main technical indicators of Hydroxypropyl Methylcellulose (HPMC)?

    1. Whiteness: Although whiteness alone does not determine the usefulness of HPMC, higher-quality products usually have better whiteness. 2. Fineness: HPMC is typically available in 80 and 100 mesh sizes, with fewer options in 120 mesh. Finer particles generally indicate better quality. 3. Transmittance: When HPMC is dissolved in water and forms a transparent colloidal solution, higher transmittance indicates fewer insoluble impurities. 4. Specific gravity: Higher specific gravity is generally better. A higher specific gravity is often due to a higher content of hydroxypropyl, which results in better water retention.
  • What is the main use of 1-Hydroxypropyl methylcellulose (HPMC)?

    The powder loss in putty is mainly related to the quality of the lime powder and has little to do with HPMC. Low calcium content in lime powder and an improper ratio of CaO and Ca(OH)2 in lime powder can both cause powder loss. If there is a slight relationship with HPMC, it would be that poor water retention of HPMC can also contribute to powder loss.
  • What are the formulations for interior and exterior wall putty powder?

    The two main indicators most users are concerned about are the content of hydroxypropyl and viscosity. Higher hydroxypropyl content generally indicates better water retention. A higher viscosity also provides relatively better water retention (not absolute), and HPMC with higher viscosity is more suitable for cement mortar.
  • News

    Request a Quote

    + 86 181 3228 9294

    Submit

    Get in Touch

    Interested in how our HPMC can enhance your personal care formulations? Contact us to request a free sample and experience the superior quality of our cellulose ether products.