HPMC supplier for Turkey
Looking for a reliable
HPMC supplier for Turkey? Look no further than [Company Name], the leading provider of high-quality HPMC products for a wide range of applications.
With years of experience in the industry, we have built a reputation for delivering top-notch products and outstanding customer service. Our HPMC products are manufactured under strict quality control standards to ensure consistent quality and performance.
We understand that every customer has unique needs and requirements, which is why we offer a diverse range of HPMC products to cater to different applications. Whether you need HPMC for food and beverage, pharmaceuticals, cosmetics, or construction, we have the right product for you.
Our HPMC products are available in a wide range of grades and specifications to meet your specific needs. We can also work with you to develop custom solutions that are tailored to your unique requirements.
Customer satisfaction is our top priority, which is why we go the extra mile to ensure that our customers are completely satisfied with our products and services. Our team of experienced professionals is always ready to answer any questions you may have and provide you with the support you need.
We take pride in our commitment to sustainability and environmental responsibility. Our HPMC products are manufactured using eco-friendly processes and materials, minimizing the impact on the environment.
As a leading HPMC supplier, we have a strong presence not only in Turkey but also in Indonesia, Bosnia and Herzegovina, Malta, India, and Morocco. We have a proven track record of delivering high-quality products and services to customers across these regions.
If you're looking for a reliable HPMC supplier, look no further than [Company Name]. Contact us today to learn more about our products and services, and how we can help you meet your specific needs.
Faq
What is the application of HPMC in putty powder, and what causes the formation of bubbles in putty powder?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What are the main raw materials of Hydroxypropyl Methylcellulose (HPMC)?
The two main indicators most users are concerned about are the content of hydroxypropyl and viscosity. Higher hydroxypropyl content generally indicates better water retention. A higher viscosity also provides relatively better water retention (not absolute), and HPMC with higher viscosity is more suitable for cement mortar.
How to choose the appropriate hydroxypropyl methylcellulose (HPMC) for different applications?
For putty powder, a viscosity of around 100,000 is generally sufficient, while mortar requires a higher viscosity, around 150,000, to be effective. Moreover, the most important function of HPMC is water retention, followed by thickening. In putty powder, as long as it has good water retention and a lower viscosity (70,000-80,000), it can still be used. Of course, a higher viscosity provides relatively better water retention. However, when the viscosity exceeds 100,000, the impact of viscosity on water retention becomes less significant.
What is the application of HPMC in putty powder, and what causes the formation of bubbles in putty powder?
HPMC is widely used in industries such as construction materials, coatings, synthetic resins, ceramics, pharmaceuticals, food, textiles, agriculture, cosmetics, and tobacco. HPMC can be classified into architectural grade, food grade, and pharmaceutical grade based on its application. Currently, most domestically produced HPMC falls under the architectural grade category. In the architectural grade, a large amount of HPMC is used in putty powder, accounting for approximately 90% of its usage, while the rest is used in cement mortar and adhesives.