HPMC powder for Kyrgyzstan
When it comes to choosing high-quality ingredients for pharmaceuticals and personal care products, Hydroxypropyl Methylcellulose (HPMC) powder has become a popular choice among manufacturers worldwide. This versatile powder is ideal for use in a wide range of applications and has proven to be highly effective, with numerous benefits that make it a top choice among consumers.
If you're seeking a reliable supplier of
HPMC powder in Kyrgyzstan, look no further than our company. We are dedicated to providing top-quality, affordable HPMC powder to our clients across the country. Our products are proudly made using only the highest-quality materials, ensuring that they meet the strictest quality standards.
One reason why HPMC powder is so popular is its non-toxic nature. This means that pharmaceuticals or cosmetics manufactured using HPMC powder are entirely safe for human use, and no harm can occur. Additionally, it produces an even, consistent solution, making it easier to work with and helping ensure that the desired final product is reached.
Our HPMC powder is ideal for use in a wide range of applications. When used in personal care products, it acts as a binding agent, emulsifier, and thickener. When it comes to the pharmaceutical industry, it is used to create drug delivery systems, tablets, and capsules. Our HPMC powder is also highly soluble in water, making it easy to incorporate into formulations.
We are committed to providing you with the highest level of customer service possible. We recognize the importance of quality materials when it comes to pharmaceutical and personal care products, and our experienced team is dedicated to ensuring that your needs are met. We are always available to answer any questions you may have to ensure that you receive the best service possible when you choose us as your HPMC powder supplier.
In conclusion, our commitment to providing top-quality HPMC powder, combined with exceptional customer service, has established us as a leading supplier of HPMC powder in Kyrgyzstan. We take immense pride in offering a product range that is designed to help our clients meet their needs effectively and efficiently. Contact us today to learn more about how our HPMC powder can benefit your business.
Our HPMC powder is available for purchase in countries such as Pakistan, Russia, Philippines, Indonesia, and the United States and is suitable for various applications.
Faq
What are the differences between HPMC and MC?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
How to choose the appropriate hydroxypropyl methylcellulose (HPMC) for different applications?
1. Whiteness: Although whiteness alone does not determine the usefulness of HPMC, higher-quality products usually have better whiteness.
2. Fineness: HPMC is typically available in 80 and 100 mesh sizes, with fewer options in 120 mesh. Finer particles generally indicate better quality.
3. Transmittance: When HPMC is dissolved in water and forms a transparent colloidal solution, higher transmittance indicates fewer insoluble impurities.
4. Specific gravity: Higher specific gravity is generally better. A higher specific gravity is often due to a higher content of hydroxypropyl, which results in better water retention.
What is the main use of 1-Hydroxypropyl methylcellulose (HPMC)?
The dosage of HPMC in actual application varies depending on factors such as climate, temperature, local lime and calcium quality, putty powder formulation, and the desired quality specified by the customer. Generally, it ranges between 4 kg to 5 kg. For example, in Beijing, most putty powders use around 5 kg; in Guizhou, it is mostly 5 kg in summer and 4.5 kg in winter; in Yunnan, the dosage is smaller, usually around 3 kg to 4 kg, and so on.
Why does hydroxypropyl methylcellulose (HPMC) have an odor?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.