HEMC powder for Kyrgyzstan
HEMC powder for Kyrgyzstan: The Ultimate Solution for Construction
As the construction industry in Kyrgyzstan continues to grow, the demand for high-quality construction materials has significantly increased. One of the essential components in the construction sector is the Hydroxyethyl methyl cellulose (HEMC) powder, which plays a critical role in enhancing the properties of mortar and cement-based products.
HEMC powder is a cellulose-based product that can be used as a thickener, binder, stabilizer, and water retention agent in construction materials. It is derived from natural polymers found in plants, making it a sustainable and eco-friendly product. HEMC powder is widely used in the production of tile adhesives, external insulation systems, construction mortars, and gypsum putties.
The HEMC powder is manufactured in India, Palestine, Morocco, Malta, Indonesia, and other countries worldwide. Companies around the world rely on HEMC powder for their construction needs due to its outstanding properties, such as excellent water retention, high adhesion, and workability.
In Kyrgyzstan, HEMC powder is becoming increasingly popular amongst construction professionals for its ability to improve the quality and performance of construction materials. The HEMC powder can be added to cement-based products to improve cohesion, adhesion, and mixing properties, resulting in more durable and long-lasting structures. It also improves the water retention properties of construction materials, thus reducing shrinkage and cracking.
With the growing demand for HEMC powder in Kyrgyzstan, companies are continuously striving to enhance their product offerings. They have also been investing in state-of-the-art production technologies to produce high-quality HEMC powder that conforms to international standards. Indian manufacturers, for instance, using world-class facilities and advanced equipment, are renowned worldwide for their high-quality HEMC powder.
In conclusion, HEMC powder is the ultimate solution for the construction industry in Kyrgyzstan. It offers high-quality, durable, and long-lasting results with eco-friendly properties. Companies in India, Palestine, Morocco, Malta, Indonesia, and other countries worldwide are producing HEMC powder for global consumption. To get the best HEMC powder for your construction needs, contact your local supplier today.
Keywords: HEMC powder, India, Palestine, Morocco, Malta, Indonesia.
Faq
What is the difference between the cold-water soluble type and the thermal soluble type of hydroxypropyl methylcellulose (HPMC) in the production process?
The viscosity of HPMC is inversely proportional to temperature, meaning that viscosity increases as temperature decreases. When we refer to the viscosity of a certain product, it generally refers to the measurement result of its 2% water solution at 20 degrees Celsius.
In practical applications, in regions with large temperature differences between summer and winter, it is advisable to use relatively lower viscosity during winter for better construction. Otherwise, at low temperatures, the viscosity of the cellulose increases, resulting in a heavier feel during application.
Medium viscosity: 75,000-100,000 (mainly used for putty)
Reason: Good water retention.
High viscosity: 150,000-200,000 (mainly used for polystyrene particle insulation mortar powder and foamed glass bead insulation mortar)
Reason: High viscosity, reduces mortar dusting and sagging, improves construction.
However, in general, higher viscosity provides better water retention. Therefore, many dry mortar manufacturers consider using medium-viscosity cellulose (75,000-100,000) instead of low-viscosity cellulose (20,000-40,000) to reduce the dosage and costs.
What are the formulations for interior and exterior wall putty powder?
MC stands for methyl cellulose, which is a cellulose ether made from purified cotton through alkali treatment using chloromethane as the etherification agent, followed by a series of reactions. The degree of substitution is generally 1.6-2.0, and different degrees of substitution result in different solubilities. It belongs to non-ionic cellulose ethers.
1. Methyl cellulose's water retention depends on the amount added, viscosity, particle size, and dissolution rate. Generally, a higher amount, smaller particle size, and higher viscosity result in better water retention. Among these cellulose ethers, methyl cellulose and hydroxypropyl methyl cellulose have higher water retention.
2. Methyl cellulose is soluble in cold water but has difficulty dissolving in hot water. Its aqueous solution is stable within the pH range of 3-12. It has good compatibility with starch, guar gum, and many surfactants. Gelation occurs when the temperature reaches the gelation temperature.
3. Temperature variation significantly affects the water retention of methyl cellulose. Generally, higher temperatures result in poorer water retention. If the temperature of the mortar exceeds 40°C, the water retention of methyl cellulose decreases significantly, which adversely affects the workability of the mortar.
4. Methyl cellulose has a noticeable impact on the workability and adhesion of mortar. "Adhesion" refers to the adhesion force between the worker's application tool and the wall substrate, i.e., the shear resistance of the mortar. A higher adhesion leads to higher shear resistance, requiring more force from the worker during application and resulting in poorer workability. Among cellulose ether products, methyl cellulose has a moderate level of adhesion.
HPMC stands for Hydroxypropyl Methyl Cellulose. It is a non-ionic cellulose ether derived from refined cotton through alkalization, using epichlorohydrin and chloromethane as etherification agents in a series of reactions. The degree of substitution is generally between 1.2 and 2.0. Its properties vary with the ratio of methoxy content to hydroxypropyl content.
(1) Hydroxypropyl Methyl Cellulose is soluble in cold water, but it can be difficult to dissolve in hot water. However, its gelation temperature in hot water is significantly higher than that of methyl cellulose. Its solubility in cold water is greatly improved compared to methyl cellulose.
(2) The viscosity of Hydroxypropyl Methyl Cellulose depends on its molecular weight, with higher molecular weight leading to higher viscosity. Temperature also affects its viscosity, with viscosity decreasing as temperature rises. However, its viscosity is less affected by temperature compared to methyl cellulose. Its solution is stable when stored at room temperature.
(3) Hydroxypropyl Methyl Cellulose exhibits stability in acids and alkalis, and its aqueous solution is highly stable within the pH range of 2 to 12. It is minimally affected by sodium hydroxide and lime water, although alkalis can accelerate its dissolution and slightly increase its viscosity. It demonstrates stability in general salts, but at higher salt concentrations, the viscosity of Hydroxypropyl Methyl Cellulose solution tends to increase.
(4) The water retention capacity of Hydroxypropyl Methyl Cellulose depends on factors such as the dosage and viscosity, and at the same dosage, its water retention rate is higher than that of methyl cellulose.
(5) Hydroxypropyl Methyl Cellulose can be mixed with water-soluble high molecular weight compounds to form homogeneous solutions with higher viscosity. Examples include polyvinyl alcohol, starch ethers, and plant gums.
(6) Hydroxypropyl Methyl Cellulose exhibits higher adhesion in mortar construction compared to methyl cellulose.
(7) Hydroxypropyl Methyl Cellulose has better resistance to enzymatic degradation compared to methyl cellulose, and its solution is less likely to undergo enzymatic degradation.
What are the differences between HPMC and MC?
1. Hot water dissolution method: HPMC does not dissolve in hot water, but it can disperse evenly in hot water initially and then rapidly dissolve upon cooling. There are two typical methods described as follows:
(1) Place the required amount of hot water in a container and heat it to approximately 70°C. Gradually add HPMC while stirring slowly. Initially, HPMC will float on the water's surface and gradually form a slurry, which cools down under stirring.
(2) Add 1/3 or 2/3 of the required amount of water to a container and heat it to 70°C. Disperse HPMC according to method (1) to prepare a hot water slurry. Then, add the remaining cold water to the hot water slurry and cool the mixture after stirring.
2. Powder mixing method: Mix HPMC powder with a large amount of other powdered substances using a blender. Afterward, add water for dissolution. In this case, HPMC can dissolve without clumping because each tiny corner of the powder contains only a small amount of HPMC, which dissolves immediately upon contact with water. This method is commonly used in putty powder and mortar production.
Regarding the relationship between viscosity and temperature in HPMC (HPMC viscosity), what should be noted in practical applications?
In simple terms, "non-ionic" refers to a substance that does not ionize in water. Ionization refers to the process in which electrolytes dissolve in specific solvents (such as water or alcohol) and dissociate into freely moving charged ions. For example, table salt we consume daily—sodium chloride (NaCl)—when dissolved in water, ionizes and produces freely moving sodium ions with a positive charge and chloride ions with a negative charge. In other words, when HPMC is placed in water, it does not dissociate into charged ions but exists in molecular form.